7 research outputs found

    Enabling Mobile Service Continuity across Orchestrated Edge Networks

    Get PDF
    Edge networking has become an important technology for providing low-latency services to end users. However, deploying an edge network does not guarantee continuous service for mobile users. Mobility can cause frequent interruptions and network delays as users leave the initial serving edge. In this paper, we propose a solution to provide transparent service continuity for mobile users in large-scale WiFi networks. The contribution of this work has three parts. First, we propose ARNAB architecture to achieve mobile service continuity. The term ARNAB means rabbit in Arabic, which represents an Architecture for Transparent Service Continuity via Double-tier Migration. The first tier migrates user connectivity, while the second tier migrates user containerized applications. ARNAB provides mobile services just like rabbits hop through the WiFi infrastructure. Second, we identify the root-causes for prolonged container migration downtime. Finally, we enhance the container migration scheme by improving system response time. Our experimental results show that the downtime of ARNAB container migration solution is 50% shorter than that of the state-of-the-art migration.This work has been partially funded by the H2020 Europe/Taiwan joint action 5G-DIVE (Grant #859881) and also partially funded by the Ministry of Science and Technology, under the Grant Number MOST 108-2634-F-009-006 - through Pervasive Artificial Intelligence Research (PAIR) Labs, Taiwan

    ARNAB: Transparent Service Continuity across Orchestrated Edge Networks

    Get PDF
    Paper presented at: IEEE GLOBECOM 2018 Workshops: Intelligent Network orchestration and interaction in 5G and beyond. Abu Dabhi. 9-13 December 2018In this paper, we present an architecture for transparent service continuity for cloud-enabled WiFi networks called ARNAB: ARchitecture for traNsparent service continuity viA douBle-tier migration. The term arnab means rabbit in Arabic. It is dubbed for the proposed service architecture because a mobileuser service with ARNAB behaves like a rabbit hopping through the WiFi infrastructure. To deliver continuous services, deploying edge clouds is not sufficient. Users may travel far from the initial serving edge and also perform multiple WiFi handoffs during mobility. To solve this, ARNAB employs a double-tier migration scheme. One migration tier is for user connectivity, and the other one is for edge applications. Our experimental results show that ARNAB can not only enable continuous service delivery but also outperform the existing work in the area of container live migration across edge clouds.This work has been partially supported by the H2020 collaborative Europe/Taiwan research project 5G-CORAL (grant num. 761586)

    Opportunities and Challenges of Joint Edge and Fog Orchestration

    Get PDF
    Pushing contents, applications, and network functions closer to end users is necessary to cope with the huge data volume and low latency required in future 5G networks. Edge and fog frameworks have emerged recently to address this challenge. Whilst the edge framework was more infrastructure focused and more mobile operator-oriented, the fog was more pervasive and included any node (stationary or mobile), including terminal devices. This article analyzes the opportunities and challenges to integrate, federate, and jointly orchestrate the edge and fog resources into a unified framework.This work has been partially funded by the H2020 collaborative Europe/Taiwan research project 5G-CORAL (grant num. 761586

    Experimental framework and evaluation of the 5G-Crosshaul Control Infrastructure

    Get PDF
    The goal of 5G-Crosshaul is to integrate fronthaul and backhaul operation under the same data and controlplanes. This paper focuses on the latter, by experimentally showing theflexibility of the 5G-Crosshaul ControlInfrastructure (XCI). In this sense, various network setups featuring heterogeneous network and computingresources and high-speed mobility were deployed over the 5G-Crosshaul testbed. More specifically, three dif-ferent use cases that exploit the capabilities embedded in the XCI have been experimentally evaluated. First,"hierarchical network orchestration" demonstrates how service setup times in complex multi-technology trans-port networks can be decreased from current manual configuration times in the order of days down to automatedsetups in the order of seconds by means of a resource management application that consumes the XCI services.Second, "energy management of IT and network resources" presents an energy management application thatexploits the XCI to deploy network configurations that achieve energy savings ranging from 15% to 40% bydynamically reacting to datacenter and network conditions. Finally, the XCI was also exploited by an energy management application in a high-speed train mobility scenario featuring a radio over fiber network in which savings close to 80% were achieved

    An Integrated, Virtualized Joint Edge and Fog Computing System with Multi-RAT Convergence

    Get PDF
    Notably, developing an innovative architectural network paradigm is essential to address the technical challenging of 5G applications' requirements in a unified platform. Forthcoming applications will provide a wide range ofnetworking, computing and storage capabilities closer to the endusers.In this context, the 5G-PPP Phase two project named "5GCORAL:A 5G Convergent Virtualized Radio Access Network Living at the Edge" aims at identifying and experimentally validating which are the key technology innovations allowing for the development of a convergent 5G multi-RAT access based on a virtualized Edge and Fog architecture being scalable, flexible and interoperable with other domains including transport, core network and distant Clouds. In 5G-CORAL, an architecture is proposed based on ETSI MEC and ETSI NFV frameworks in a unified platform. Then, a set of exemplary use cases benefiting from Edge and Fog networks in near proximity of the end-user are proposed for demonstration on top of connected car, shopping mall and high-speed train platforms.This work has been partially funded by the H2020 collaborative Europe/Taiwan research project 5G-CORAL (grant num. 761586

    Novel Resource and Energy Management for 5G Integrated Backhaul/Fronthaul (5G-Crosshaul)

    Get PDF
    The integration of both fronthaul and backhaul into a single transport network (namely, 5G-Crosshaul) is envisioned for the future 5G transport networks. This requires a fully integrated and unified management of the fronthaul and backhaul resources in a cost-efficient, scalable and flexible way through the deployment of an SDN/NFV control framework. This paper presents the designed 5G-Crosshaul architecture, two selected SDN/NFV applications targeting for cost-efficient resource and energy usage: the Resource Management Application (RMA) and the Energy Management and Monitoring Application (EMMA). The former manages 5G-Crosshaul resources (network, computing and storage resources). The latter is a special version of RMA with the focus on the objectives of optimizing the energy consumption and minimizing the energy footprint of the 5G-Crosshaul infrastructure. Besides, EMMA is applied to the mmWave mesh network and the high speed train scenarios. In particular, we present the key application design with their main components and the interactions with each other and with the control plane, and then we present the proposed application optimization algorithms along with initial results. The first results demonstrate that the proposed RMA is able to cost-efficiently utilize the Crosshaul resources of heterogeneous technologies, while EMMA can achieve significant energy savings through energy-efficient routing of traffic flows. For experiments in real system, we also set up Proof of Concepts (PoCs) for both applications in order to perform real trials in the field.© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

    Energy Monitoring and Management in 5G Integrated Fronthaul and Backhaul

    No full text
    Energy efficiency is likely to be the litmus test for the sustainability of upcoming 5G networks. Before the new generation of cellular networks are ready to roll out, their architecture designers are motivated to leverage the SDN technology for the sake of its offered flexibility, scalability, and programmability to achieve the 5G KPI of 10 times lower energy consumption. In this paper, we present Proofs-of-Concept of Energy Management and Monitoring Applications (EMMAs) in the context of three challenging, realistic case studies, along with a SDN/NFV-based MANO architecture to manage converged fronthaul/backhaul 5G transport networks
    corecore